Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery

Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery PDF By Sylke Müller, Rachel Cerdan and Ovidiu RadulescuBy Sylke Müller, Rachel Cerdan and Ovidiu Radulescu

Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery PDF is Written and edited by experts in the field, this book brings together the current state of the art in phenotypic and rational, target-based approaches to drug discovery against pathogenic protozoa. The chapters focus particularly on virtual compounds and high throughput screening, natural products, computer-assisted drug design, structure-based drug design, mechanism of action identification, and pathway modelling. Furthermore, state-of the art “omics” technologies are described and currently studied enzymatic drug targets are discussed. Mathematical, systems biology-based approaches are introduced as new methodologies for dissecting complex aspects of pathogen survival mechanisms and for target identification. In addition, recently developed anti-parasitic agents targeting particular pathways, which serve as lead compounds for further drug development, are presented.

Read more: Parasitology in Veterinary Medicine

Table of Contents

List of Contributors IX

Foreword XIX

Preface XXIII

Part One Identification and Validation of New Drugs and Targets 1

1 Discovery of theMechanism of Action of Novel Compounds That Target Unicellular Eukaryotic Parasites 3
Daniela Begolo∗ and Christine Clayton

2 Antiparasitics fromAlgae 41
Stefan Ringgeler and Barbara Kappes∗

3 Contribution of Natural Products to Drug Discovery in Tropical Diseases 75
Frederick Annang, Olga Genilloud∗, and Francisca Vicente

4 Isoxazolines: A Novel Chemotype Highly Effective on Ectoparasites 105
Tina Weber and Paul M. Selzer∗

5 Trypanosomal Cysteine Peptidases: Target Validation and Drug Design Strategies 121
Elany Barbosa da Silva, Glaécia Aparecida do Nascimento Pereira, and Rafaela Salgado Ferreira∗

6 Potential of Pyrimidine Metabolism for Antitrypanosomal Drug Discovery 147
María Valente, Antonio E. Vidal, and Dolores González Pacanowska∗

7 Phosphatidylcholine and Phosphatidylethanolamine Biosynthesis Pathways in Plasmodium 171
Ewelina Guca, Alicia Contet, Henri J. Vial, KaiWengelnik, and Rachel Cerdan∗

8 Immunophilins as Possible Drug Targets in Apicomplexan Parasites 193
Alessandra Bianchin∗, Anthony J. Chubb, and Angus Bell

9 Targeting the Atg8 Conjugation Pathway for Novel Anti-Apicomplexan Drug Discovery 213
Alexia S. Miller and Jürgen Bosch∗

10 Turnover of Glycosomes in Trypanosomes – Perspectives for Drug Discovery 231
Ana Brennand, Eva Rico, Melisa Gualdrón-López, and Paul A.M. Michels∗

11 Glideosome of Apicomplexans as a Drug Target 255
Lauren E. Boucher and Jürgen Bosch∗

12 N-Myristoyltransferase as a Target for Drug Discovery in Malaria 275
James A. Brannigan and Anthony J. Wilkinson∗

Part Two Metabolomics in Drug and Target Discovery 295

13 Methods to InvestigateMetabolic Systems in Trypanosoma 297
Maria Fatarova, Florian Bellvert, Edern Cahoreau, Frédéric Bringaud, and Jean-Charles Portais∗

14 The Role of Metabolomics in Antiparasitic Drug Discovery 321
Carlo R. Giannangelo, Katherine M. Ellis, Anna E. Sexton, Daniel Stoessel, and Darren J. Creek∗

15 The Importance of Targeting Lipid Metabolism in Parasites for Drug Discovery 343
Simon A. Young, Matthew D. Roberts, and Terry K. Smith∗

16 CarbonMetabolism of Plasmodium falciparum 371
Marco Biddau and Sylke Müller∗

Part Three Gene Expression and Its Regulation – A Promising Research Area for Drug Discovery 399

17 Epigenetic Gene Regulation: Key to Development and Survival of Malaria Parasites 401
Sabine Anne-Kristin Fraschka and Richárd Bártfai∗

18 Mechanisms Regulating Transcription in Plasmodium falciparum as Targets for Novel Antimalarial Drugs 421
Evelien M. Bunnik and Karine G. Le Roch∗

19 Aminoacyl t-RNA Synthetases as Antimalarial Drug Targets 441
Anmol Chandele∗ and Amit Sharma

Part Four Mathematical Approaches to Drug and Target Discovery 455

20 MathematicalModeling and Omic Data Integration to Understand Dynamic Adaptation of Apicomplexan Parasites and Identify Pharmaceutical Targets 457
Partho Sen, Henri J. Vial, and Ovidiu Radulescu∗

21 Understanding Protozoan Parasite Metabolism and Identifying Drug Targets through Constraint-Based Modeling 487
Francis Isidore Totanes, Sanu Shameer, David R.Westhead, Fabien Jourdan, and Glenn A. McConkey∗

22 Attacking Blood-Borne Parasites with Mathematics 513
David D. van Niekerk, Gerald Penkler, François du Toit, Jacky L. Snoep, Barbara M. Bakker, and Jurgen R. Haanstra∗

Index 543

This Book is For Premium Members Only

Become a Premium Now